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Torsional Loads on Circular Shafts

Generator

A Interested in stresses and strains of
b circular shafts subjected to twisting
T couples or torques

Turbine exerts torque T on the shaft

Shaft transmits the torque to the
generator

Generator creates an equal and
opposite torque T’
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Net Torque Due to Internal Stresses

Net of the internal shearing stresses is an
internal torque, equal and opposite to the
applied torque,

T =[pdF=]p(r dA)

Although the net torque due to the shearing
stresses is known, the distribution of the stresses
IS not

Distribution of shearing stresses is statically
Indeterminate — must consider shaft
deformations

Unlike the normal stress due to axial loads, the
distribution of shearing stresses due to torsional
loads can not be assumed uniform.
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Axial Shear Components

« Torque applied to shaft produces shearing
stresses on the faces perpendicular to the
axis.

Conditions of equilibrium require the
existence of equal stresses on the faces of the
two planes containing the axis of the shaft

The existence of the axial shear components is
demonstrated by considering a shaft made up
of axial slats.

The slats slide with respect to each other when
equal and opposite torques are applied to the
ends of the shaft.
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Shaft Deformations

From observation, the angle of twist of the
shaft is proportional to the applied torque and
to the shaft length.

pocT
¢ oc L

When subjected to torsion, every cross-section
of a circular shaft remains plane and
undistorted.

Cross-sections for hollow and solid circular
shafts remain plain and undistorted because a
circular shaft is axisymmetric.

Cross-sections of noncircular (non-
axisymmetric) shafts are distorted when
subjected to torsion.
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Shearing Strain

Consider an interior section of the shaft. Asa
torsional load is applied, an element on the
interior cylinder deforms into a rhombus.

Since the ends of the element remain planar,
the shear strain is equal to angle of twist.

It follows that

Ly =p¢ or 7=p—|_¢

Shear strain is proportional to twist and radius

Co P
=— and y="-
7 max L V4 c 7 max
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Stresses In Elastic Range

« Multiplying the previous equation by the
shear modulus,
= Gy =" G mx

N

/{‘ 111 From Hooke’s Law, 7 =Gy, so
Jo,

T="—7T
max
C

The shearing stress varies linearly with the
radial position in the section.

e Recall that the sum of the moments from
the internal stress distribution is equal to
the torque on the shaft at the section,

T =[prdA=maxy 2 g - fmax g
C C

* The results are known as the elastic torsion

formulas,

Tmax = T and 7=17 1 =p1s the shaft radius


contents.ppt

m=
%g \‘ ' \‘ A = A Beer * Johnston ¢ DeWolf
|

THE TORSION FORMULA

1.4
J—zﬂ':‘;‘

T .= max. shear stress in shaft, at the outer surface

X

1= resultant internal torque acting at x-section, from method
of sections & equation of moment equilibrium applied
about longitudinal axis

J = polar moment of inertia at x-sectional area

¢ = outer radius of the shaft
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THE TORSION FORMULA

Polar moment of inertia, J
for a solid circular shaft, can be determined by:

dp

=2 g
30 ¢

Note that r =p is the shaft radius

« J I1s a geometric property of the circular area and
Sl js always positive. Its common units are:

= mm?* & m?.

« For a hollow circular shaft, II-

Mc
Graw
Hill
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Polar moment of inertia, J
for a tubular circular shaft, can be determined by:

Shear stress varies linearly along
cach radial line of the cross section,
(b}
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Torsional Failure Modes

 Ductile materials generally fail in
shear. Brittle materials are weaker in
tension than shear.

When subjected to torsion, a ductile
specimen breaks along a plane of
maximum shear, 1.e., a plane
perpendicular to the shaft axis.

When subjected to torsion, a brittle
specimen breaks along planes
perpendicular to the direction in
which tension is a maximum, i.e.,
along surfaces at 45° to the shaft
axis.

] V] [A] [Z]
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Example

Shaft shown supported by two bearings and
subjected to three torques. (a) Draw the torque
diagram and (b) determine shear stress developed
at points A and B, located at section a-a of the shaft
at 15 and 7S mmradii. J =4.97x 10" mm?

4;’-{} kKN-mm

/‘ Ei 1fﬂﬂ kN-mm

] [V] [A]
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Example

s25Nxm 1Y)

3kNm

Bearing resists
no forque

T-D, KNm

4250 KN-mm
=

i -

B i i i’
‘ /3000 KN-mm
¥
. _J»” [ 250 kM -mm

R

i I-D: Infernal Torgne

O-D: =% 1 £ O,
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Example

Internal torque

If shaft weight assumed to be negligible, then bearing
torque reactions on shaft =0

Applied torques satisfy moment equilibrium about shaft's
axis.

Internal torque at section a-a determined from free-body
diagram of left segment.

-Pwu EN-mm 4.;5_() KN-mm

» l ‘

= a
/(&\’ - ¥



contents.ppt

j \‘ [ A k Beer » Johnston  DeWolf

Example

Internal torque:
>1x =0,

4250 kN'mm — 3000 kN-mm — 7'=0
7'=1250 kN-mm

Section property S
J=7(75 mm)? /2= 4.97x 107 mm?* | / / -

Shear Stresses
Since point4isat»=c=75mm

P Ic/J=...=1.89 MPa
Likewise at Pt. B, ¥ = 15mm

= Tr/J=..=0.377 MPa

'!ll.]':J[] KMN-m

"

] [V] [A]
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T,=6kN-m/

Ty = 14kN - m / o

T =26kN - m
T, =6kN.m

Shaft BC is hollow with inner and outer
diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are solid
of diameter d. For the loading shown,
determine (a) the minimum and maximum
shearing stress in shaft BC, (b) the
required diameter d of shafts AB and CD
If the allowable shearing stress in these
shafts is 65 MPa.

SOLUTION:

 Cut sections through shafts AB
and BC and perform static
equilibrium analysis to find
torque loadings

« Apply elastic torsion formulas to
find minimum and maximum
stress on shaft BC

Given allowable shearing stress
and applied torque, invert the
elastic torsion formula to find the
required diameter
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Sample Problem 3.1

« Cut sections through shafts AB and BC
and perform static equilibrium analysis
to find torque loadings

T,=6kN -m

>M, =0=(6kN-m)-Tpg
TAB =6kN-m :TCD

TB(,‘

Y

>M, =0=(6kN-m)+(14kN-m)-Tgc
TBC =20kN-m
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Sample Problem 3.1

« Apply elastic torsion formulas to  Given allowable shearing stress and
find minimum and maximum applied torque, invert the elastic torsion
stress on shaft BC formula to find the required diameter

6 kN -m

3= %(Cg o) %[(0.060)4 ~(0.045)"]

& 13.92x10~%m? 15910
C =vo0. m
_ (20kN-m)(0.060m) "
A — — —
13.92 x10~%m? d=2c=77.8mm

86.2MPa 60mm  [r... =86.2MPa
Tomin = 64.7 MPa Tmin = 64.7 MPa

§§‘§
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Angle of Twist in Elastic Range

 Recall that the angle of twist and maximum
shearing strain are related,

C
Y max :T¢

In the elastic range, the shearing strain and shear
are related by Hooke’s Law,
_ Tmax _ 1C
Ymax = G G
Equating the expressions for shearing strain and
solving for the angle of twist,
CTL
TS
If the torsional loading or shaft cross-section
changes along the length, the angle of rotation is
found as the sum of segment rotations

TiL,
=y it
? i JiG;

] V] [A] [Z]
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Sample Problem 3.4

36 in.

I in.

) 0.75 in,

O B

2.45 in.
0.875 in.

Two solid steel shafts are connected
by gears. Knowing that for each shaft
G =11.2 x 10° psi and that the
allowable shearing stress is 8 ks,
determine (a) the largest torque T,
that may be applied to the end of shaft
AB, (b) the corresponding angle
through which end A of shaft AB
rotates.

SOLUTION:

Apply a static equilibrium analysis on
the two shafts to find a relationship
between Ty and T,

Apply a kinematic analysis to relate
the angular rotations of the gears

Find the maximum allowable torque
on each shaft — choose the smallest

 Find the corresponding angle of twist

for each shaft and the net angular
rotation of end A
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Sample Problem 3.4

SOLUTION:

« Apply a static equilibrium analysison < Apply a kinematic analysis to relate
the two shafts to find a relationship the angular rotations of the gears
between Ty and T,

C

=945 in rg = 0.875 in. rg = 0.875 in.

c = &40 1m.
> Mg =0=F(0.875in.)-T . ) asin
> M¢ = 0= F(2.45in.)-Tep 78 = - 9C = g75in.7C

Tep =2.8Tg dg = 2.84¢

] V] [A] [Z]
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Sample Problem 3.4

* Find the T, for the maximum  Find the corresponding angle of twist for each
allowable torque on each shaft —  shaft and the net angular rotation of end A
choose the smallest

»

by = 10.48°

Tagl (56110 -in.)(24in.)

AN

PA/B =

IasG  7Z(0.375in.)*{11.2x10% psi)

=0.387rad = 2.22°
TcpLl  2.8(561lb-in.)(24in.)
JepG % (0.5in.)*{11.2x10%psi

T(0.375in)*  9C/D

Ty = 663Ib-in.

TepC . 2.8Tp(0.5in.
‘]CD 75(05|n) ¢B = 28¢C =2.812.95" |=8.26

= 0.514 rad = 2.95°

] [V] [A]

To = 561Ib-in. To = 561Ib-in S =¢B +Pasp =8.26° +2.22°

§§‘§
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Example

50-mm-diameter solid cast-iron post shown is buried
600 mm in soil. Determine maximum shear stress in
the post and angle of twist at its top. Assume torque
about to turn the post, and soil exerts uniform

torsional resistance of  N-mm/mm along its 600 mm
buried length. G =40(10°) GPa /,;h\ﬁ

S
= 150 mm 100 N

£} ""\_\. :
"~ 50 mm

WO mim

.

mini
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Example

Internal torque

From free-body diagram
M. =0, T,,=100N(300mm)=30x 10°N-mm

150 mm [00ON
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Example

Internal torque

Magnitude of the uniform distribution of torque along
buried segment BC can be determined from
equilibrium of the entire post. S

.'___.____ > e .-"‘{-.
p b L l‘il[}rnm
= - e

100N

> M.=0;

100 N(300 mm) — /600 mm) = 0
=50 N'-mm

] [V] [A]

§§‘§


contents.ppt

j \‘ [ A k Beer » Johnston  DeWolf

Example

Internal torque

Hence, from free-body diagram of a section of the
post located at position x within region BC, we have

> M. =0;
T = 50x

] [V] [A]

§§‘§
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Example

Maximum shear stress

Largest shear stress occurs in region 4B, since
torque largest there and J is constant for the post.
Applying torsion formula

... = 1.22 N/mm?
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Angle of twist

Angle of twist at the top can be determined relative
to the bottom of the post, since it is fixed and yet is
about to turn. Both segments 4B and BC twist, so

I

Lgc
@A:_JEAE +J‘ * Tpe dx
. JG o JG

$,=0.00147 rad
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Design of Transmission Shafts

* Principal transmission shaft « Determine torque applied to shaft at
performance specifications are: specified power and speed,
- power P=Tw=24dT
- Speed P P
[

« Designer must select shaft
material and cross-section to
meet performance specifications
without exceeding allowable

e Find shaft cross-section which will not
exceed the maximum allowable
shearing stress,

Gl shearing stress.
< (solid shafts)
(hollow shafts)

§§‘§
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Power transmitting

« Power (P) is defined as work performed per unit
of time: P=To
* Since shaft's angular velocity = 2 2N/60
Then we can express power as:
P=T@2aN/60)=T 2xf)

* Frequency f : It measures the number of cycles
per second and 1 cycle = 2 radians,

* N 1s a shaft’s rotation 1n rpm together with the power of
the motor in hp or kw are often reported.
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Power transmitting

. ! (Ib. £ N rpm

52352

] [V] [A]
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Power transmitting

« Principal transmission shaft
performance specifications are:

—power : ip or kw
—speed : Nin rpm

* Determine torque applied to

—

* Designer must select shaft
material and cross-section to
meet pertformance
specifications without
exceeding allowable shearing
stress (T, OF T,..)-

shaft at specified power (P) and - Find shaft diameter (¢) which

speed (N),

Power ,..
7 =5252 (hp)

—=(Ib. f¢)
1pmn

Power gy

~
|

9549

P

==(N.m)

will not exceed the maximum
allowable shearing stress,

(solid shafts)

. ): I (hollow shafts)
T
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Example

Solid steel shaft shown used to transmit 3750 W from
attached motor M. Shaft rotates at V=175 rpm and the
steel 7,,.. = 100 MPa. Determine required diameter of

allow

shaft (d) to nearest mm.

o z-111.?1:-{ T

] [V] [A]

§§‘§
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Example

Given: P=3750w=3.75 kw, N=175 rpm, and
7~ 100 MPa=100x10°N/m?

7 =0.0109m =10.9mm ~ 1 lmm

I
-

We select shaft with diameter of d =22 mm

] [V] [A]

§§§
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Example

Torgue on shaft determined from P =T,
Thus, P=3750 N'm/s
_175 reV(Eit rad y,1 min
min \ lrev 7\ 608
Thus, P=To, 7'=204.6 N'm
J mnct I

0 = 18.33 rad/s

C 2 "32 _ Tﬂlll‘.}“"

C - 10.92 mm

Since 2¢ = 21.84 mm, select shaft with diameter of
d =22 mm
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Stress Concentrations

1.3

121

1.1

1.0
0 0.05 010 0.15 0.20 0.25 0.30

ri/d

Fig. 3.32 Stress-concentration factors for
fillets in circular shafts.t

« The derivation of the torsion formula,
Tc

Tmax = 3
assumed a circular shaft with uniform
cross-section loaded through rigid end
plates.

The use of flange couplings, gears and
pulleys attached to shafts by keys in
keyways, and cross-section discontinuities
can cause stress concentrations

Experimental or numerically determined

concentration factors are applied as
Tc

Tax = K—

J
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Example

Stepped shaft shown is supported at bearings at 4
and B. Determine maximum stress in the shaft due
to applied torques. Fillet at junction of each shaft has
radius » = 6 mm.

30 N'‘m

o
60 N-m ///¢

30 N-m /“\'
/\

40 mm

’() mm

] [V] [A]

§§‘§
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Example

] [V] [A]
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Internal torque

By inspection, moment equilibrium about axis of
shaft is satisfied. Since maximum shear stress
occurs at rooted ends of smaller diameter shafts,
internal torque (30 N'm) can be found by applying
method of sections

30 N-m \‘\

(b)

=30 N-m
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Example

Maximum shear stress _,
From shaft geometry, we have *
D _2(40mm)
d 2(20 mm)
r__omm) s
d 220 mm)

Thus, from the graph, K=1.3

T — K(Ic/J) = ...= 3.10 MPa

] [V] [A]

§§‘§
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Example

Maximum shear stress

From experimental evidence, actual stress
distribution along radial line of x-section at critical

section looks similar to:
7...=3.10 MPa

max

f l'

!l

l\
Shear-stress Actual shear-stress
distribution distribution caused
predicted by by stress concentration

torsion formula

(C)
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